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LIST OF SYMBOLS EMPLOYED IN THESIS.

i The instantaneous oscillating current in a branch of a network am-

peres

n A generalized angular velocity of oscillation hyperbolic radians per
second Z

Z Generalized impedance ohms Z

E Initial potential volts

Naperian base 2.718 ....

twi 2 Roots of the equation Z =o, hyperbolic radians per second Z

C Total capacitance farads

L Total self inductance henries

M Total mutual inductance henries

R Total resistance ohms

Constants of the primary and secondary of a coupled circuit are dis-

tinguished by subscripts

a, /3, 7, 5, 77 Coefficients of the equation Z = o for the coupled circuit

q Correction to be applied to the absolute values of the free angular
velocities of a resistanceless coupled circuit to obtain the absolute

values of the angular velocities of the complete circuit. numeric

p A correction to be added and subtracted to - to obtain the decrements
4

of the complete coupled circuit. hyp. rad. per sec.

s, t Sum and difference respectively of the squares of the angular velocities

of the resistanceless coupled circuit.
/hyp. rarl \2

>. rad.V

sec. /\ sec

j The pure imaginary, V i

A A generalized amplitude of current oscillation amperes Z

m Number of sections of an artificial line

h Auxiliary constant numeric

.Z This sign appended to the units of an equation denotes that the expres-

sion contains, in general, complex quantities



OSCILLATING-CURRENT CIRCUITS.

INTRODUCTION.

Heaviside,* and since then several others,! have shown that for the free

oscillations of a network the generalized impedance, formed from the con-

stants of the network and the complex angular velocity of oscillation, is

zero for any complete circuit. This principle enables the frequencies and
decrements of the free oscillations of a network to be readily found. There

is a similar principle which enables the finding of the amplitudes of free

oscillation at the several frequencies, which is also in Heaviside, derived

from a series of theorems concerning the distribution of energy during
subsidence. It is the purpose of the thesis, of which this is an abstract, to

demonstrate the application of this second principle to practical engineering

problems.
The principle may be stated as follows: If Z is the generalized impedance

of a branch of the network initially containing a store of energy, corre-

sponding to the initial voltage E, and if n is the complex angular velocity
of oscillation, so that Z= /(), then the first order term in the Taylor ex-

j rj

pansion of Z, namely, n
,
will be of the nature of an impulsive impedance ;

d n

and the oscillatory current will be of the form :

E nt ,

amperes Z--^ dz
n
dn

where the summation extends over the roots i, n^,
- - of the equation Z =o.

It will be convenient to call the expression n the "threshold im-
d n

pedance."*
The equation, as given, applies to the current in the branch initially

charged, where the generalized and threshold impedances are formed for

that branch.

The discussion of the application of this principle to various typical net-

works has indicated the truth of the following additional propositions
which will be found useful in attacking particular problems:

* Heaviside. Electrical Papers, Electromagnetic Theory, Vol. II.

t Campbell, Proc. AIEE, 1911;

Kennelly, Proc. IRE, 1915;

Eccles & Makower, Electrician, 1915.



(1) In determining the amplitude of oscillation at some point of the net-

work distant from the branch initially charged, the generalized impedances

of the elements combine in the manner of simple resistances. Upon com-

bining with the generalized impedance of an element, each term of a cur-

rent or voltage expression is combined with the generalized impedance of

the element formed for the free angular velocity of the term considered.

(2) When several stores of energy are simultaneously discharged they

may be considered separately and the results added.

(3) In order to ensure that the correct free angular velocities be ob-

tained, the generalized impedance should be formed for the branch under

examination; as in special cases certain free angular velocities may be

absent in particular branches of the network.

(4) The threshold impedance is formed always from the generalized

impedance which considers the initially charged element as the main

branch.

(5) The sudden application of a steady electromotive force may be

treated as the inverse of the discharge from the final state attained.

(6) The sudden application of an alternating electromotive force may be

treated in similar manner, the unbalanced stores of energy being in this

case the differences between the initial stores of energy in the network, and

the energies at the same points of the network corresponding in the steady

state to the point of the voltage wave at which it was suddenly applied.

The method of applying the threshold impedance is shown by various

examples. One of these, the series circuit containing resistance, inductance,

and capacitance is included here for illustration.

Resistance

f\ o/ims.

Inductance

L_ henries.

C farads.

P/g.
/ . 5imf)le Series Osci/latin<j Circuit.
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In this circuit (see fig. i) the generalized impedance will be:

Z =R+Ln+ ohms Z
Cn

Equaling to zero and solving for n, we obtain the free angular velocities:

L
LC

_ R
. // R\* r

71% % / I - I -
*L V \2 L/ LC

hyp- rad.

sec.

The threshold impedance is:

n =Ln ohms Z
dn Cn

If now we consider the condenser as discharging through the circuit from

an initial voltage E, the current will be:

n=nz E ni ,i= ^ e amperes Z
n^x n ^H

dn

or

E nit i E n%t /
t = e -j- e amperes Z.

i _ i

which, with the values of n\ and n* given above, is the complete oscillatory

solution. This expression may be reduced to the usual form by inserting

the values of i and n^. There will, of course, be three cases according as

the quantity under the radical is positive, zero, or negative. For the third

case the expression becomes upon reducing:

amperes
LC \2L'

which is the solution obtained by the usual methods. The solutions for

the other cases may be obtained by similar reductions.

It will be noted that this method of solving the circuit is much more con-

cise and direct than is the method of determining the constants of integra-

tion in the differential equation solution, in accordance with the boundary
conditions. It is also convenient to retain all three cases in the single

expression.
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If we wish the oscillatory voltage across, for instance, the reactor in this

circuit, we may obtain it by multiplying the oscillatory current by the

generalized impedance of the reactor, and treat the current terms separately,

thus:

nit , ELnz n2t ,
- e + volts Z

i i

Cn\ Cn2

and this expression may also be reduced by inserting the values of n\ and n^.

THE COUPLED CIRCUIT.

The coupled circuit has been thoroughly solved by the method of differ-

ential equations.* These solutions have been discussed from the point of

view of the applications of this circuit, particularly to radio work. Many
approximate solutions have been obtained for the case of the free discharge

of the primary condenser, either by neglecting the effects of resistance, or

the reaction of the secondary upon the primary, or in some similar way.
The complete exact solution has been generally avoided, principally because

of its complication. The resistance operator method, or the method of

generalized angular velocities, has also been applied to this circuit in as far

as the frequencies and decrements are concerned.! This method gives the

same equation for the determination of the free angular velocities as does

the differential equation solution, namely:

numerc

where n is the complex angular velocity, and the constants are those shown

on fig. 2.

Fi<j.i. JndvctiVely Counted Circuit.

* Bjerkness, Wied. Ann. 55, 1895; Oberbeck, Wied. Ann. 55, 1895; Domalys & Kolacek,

Wied. Ann. 57, 1896; Wien, Wied. Ann. 61, 1897; Rayleigh, Theory of Sound; Braun, Phys.

Za. 3, 1901; Drude, Ann. d. Phys. 13, 1904; Jones, Phil. Mag. 1907; Cohen, Bui. Bu. Stds.

S, 1909; Pierce, Proc. Am. Ac. A. & Sc. 46, 1911; Fleming, Proc. Phys. Soc. 1913-

t Eccles, Phys. Soc. Proc. 24, 1912. Kennelly, Proc. IRE, 1915.



The solution of this fourth degree equation is laborious, and may be

avoided in the following manner. The equation may be written in the form :

/hyp. rad.X 4 ,

and if we treat the same circuit without resistance we obtain the easily

solved equation:

/hyp- rad.V
I
-^--

)

\ sec. /

The roots of this last equation will differ but little in absolute value from

the absolute values of the roots of the complete equation. If (i -\-q) and

(i q) are the correction factors to be applied to the absolute values of the

resistanceless roots in order to obtain the absolute values of the complete

roots, we may find an expression for q by means of the algebraic relations

between the roots and coefficients of the above equations; and in deriving
this relation the square of q may be neglected. This expression is:

P-yt-ctS--- numeric

where s is the sum and / the difference of the squares of the roots of the

resistanceless equation.

In a similar manner the relation may be derived:

27 as+aqt

4t8qs

where
( -+p } and

(
- p } are the decrements in the solution of the com-

\4 / \4 /

plete circuit. In this manner the frequencies and decrements of the oscil-

lations in the coupled circuit may be obtained without the necessity of

solving the fourth degree equation.

This method, tested on a typical circuit with constants:

Ci = io~9 farads

C2
= io-10 farads

RI =1000 ohms

RZ =2000 ohms

LI =0.025 henries

L2 =0.040 henries

M =0.020 henries

gave by exact solution:

17638.9=117192683.
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and by the approximate method :

-
57361.o; 664750.

-17639.0^192680.

The amplitudes of oscillation may be readily found by the use of the

threshold impedance. If we consider the discharge of the primary con-

denser, so that the primary is the main branch, the threshold impedance is:

n ohms Z

Inserting into this expression the four roots MI, w2 ,
w3 ,

w4 of the equation Z = o,

gives four particular values of the threshold impedance. Dividing the

initial primary condenser voltage by each of these values gives the four

complex amplitudes for the primary current expression:

t nit , n%t . . nz t . . w4/ /
^l
= Al +A 2 e +A 3 e + A te , amperes L

This expression may be readily reduced to trigonometric form, when the

imaginary portions of the expression cancel out.

An examination of the generalized impedance of the several elements of

the circuit gives for the ratio between the primary and secondary ampli-

tudes: v
Mn . /- numeric Z.

The four values of this ratio applied to the primary amplitudes give the

corresponding secondary amplitudes*

The results above were checked by means of oscillograms taken upon
a typical coupled .circuit. The constants chosen

^i =I -937 ohms

Rz =2.531 ohms

LI =7.52 x io~3 henries

Lt =7.63 x i o~3 henries

M =3475 x io~3 henries

C\ =13.51 microfarads

2 =24.62 microfarads

gave frequencies of oscillation 609.5 and 339- 2 which were within con-

venient range for the oscillograph. The computed points checked the os-

cillograms within the errors of measurement. A solution was also made by
differential equations as a check.



II

APPLICATION TO THE ARTIFICIAL LINE.

There has been much difficulty encountered in the analysis of smooth line

transients. The -cable has been comparatively easily handled,* but the

analysis of the aerial line has given in general results too complicated for

engineering use. For experimental analysis for steady state phenomena
the lumped artificial line has proved invaluable,! but there has been much
doubt as to just how far such a line of a given number of sections could be

trusted for transient effects, t

The method of generalized angular velocities is applied in the thesis to

the analysis of the oscillations of the artificial line under certain typical con-

ditions. The distant-end current on a grounded artificial line, when a

steady voltage is suddenly applied at the home end, is considered for the

artificial cable, and the artificial aerial line. The IT line is used, but the

formulas apply also to the T line with small changes.

The purpose of this analysis is to determine, for specific cases, the number
of sections requisite in an artificial line, in order that it may represent its

corresponding smooth line, not only for the steady state, but also for certain

transient effects, to a sufficient degree of approximation for engineering

investigations.

The method used is simply to analyze artificial lines with various num-
bers of sections, considered simply as networks with concentrated constants.

The results of these successive solutions are grouped, and from them is

derived the solution for the general case of m sections.

The general solutions for the application of a steady electromotive force

to the grounded artificial line obtained in this way follow:

For the cable of m sections containing resistance and capacitance only:

[
m*hit m*fe*

"~|<*
I+!^=l (

RC
-^Z2e RC

+ . . . amperesRL 22 J
where

*# is the received current

E the applied steady voltage
R the total resistance

Cthe total capacitance.

* Kelvin, Proc. Roy. Soc. 1855;

Poincar6, EC. Elect. 40, 1904;

Malcolm, Electrician 1911; 12.

fPupin, Trans. AIEE 1890, 1900; Trans. Am. Math. Soc. 1900;

Kennelly, Proc. Am. Acad. Arts & Sci., 44, 1908 ;

. Huxley. Thesis M. I. T., 1914.

J Cunningham and Davis, Proc. AIEE 1911, 1912;

Ricker. Thesis M. I. T. 1915.
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The values of h are found as roots of the auxiliary equation:

=0
2 !

numeric

where there are terms if m is even, and terms if m is odd.

A curve for obtaining these roots is presented for convenient use in prac-
tical cases. ,

For the aerial line containing resistance, capacitance and inductance,
the corresponding equation is:

r

<-![-
LC

hm2 ^
2L 2L

I

J m'fe ( R\*
V ~7C

"
(71^ + ' ' J

LC \* ^/ amperes

As the line is subdivided an oscillatory term appears in this equation for

each section introduced.

This aerial line formula was checked by means of oscillograms taken

upon a typical artificial aerial power transmission line at Pierce Hall,

Harvard University.* Twelve sections were used, representing a line of

the following constants:

#000 A.W.G. aluminum stranded conductors

Overstrand diameter 0.47 inches

Interaxial distance 90.5 inches

Length 596.4 miles.

Total inductance 1.035 henries

Total capacitance 8.ioXio~6 farads

Total resistance 300. 1 ohms

The elements of this artificial line were grouped in such a manner that it

was arranged as a IT line of various numbers of sections. The arrival curve

of current computed and plotted to the scale of the oscillograms showed a

check to a reasonable degree of accuracy.

* Kennelly and Tabossi, Elec. World 1912.



In order to determine the relation between the artificial and smooth

cables, the cable formula was plotted for the numerical case:

=200 ohms
C= io~6 farads

R=2O volts

for various numbers of sections. It was found that with these constants,

the arrival curve on a six section artificial cable coincided to a sufficient

degree of accuracy, for the purposes of engineering, with the smooth line

arrival curve as plotted from Kelvin's formula:

-C- 2 e

n-n

'RC RC
amperes

The limiting value of the artificial aerial line formula as the number of

sections is indefinitely increased was also considered. From the fact that

the artificial cable formula approaches Kelvin's smooth line formula in the

limit, were derived the limits of the various values of mz

h^
and h as m= o

.

A certain approximation was also made because of the fact that in lines

encountered in practice
/ R

ice, I
-

\2 Li

L
may be neglected in comparison with - .

X/C

Applying these facts to the artificial aerial line formula gave the following

expression for the received current on a grounded smooth aerial line when a

steady voltage is suddenly applied at the home end :

Rt Rt

Er
*-*-' - amperes

where F (/) is the discontinuous function represented in fig. 3.

HLC-+

fig.
3. The Fft) in tfte atriaL tine formula.
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The arrival curve plotted from this formula for the smooth line on which

the oscillograms were taken is shown in fig. 4.

-4-" ft/W

Time

Fig. 4. Arrival Current, Smooth Aerlat Line.

A comparison of this smooth line curve with the artificial line arrival

curves showed that the artificial line of four sections, or less, did not well

approximate the smooth line, for the transient due to the sudden application

of a steady voltage. The artificial line of twelve sections approximated
the smooth line fairly well; but a still greater number of sections would be

necessary, in order to enable the artificial line to be used for experimental

investigation with this type of transient.

SUGGESTION FOR A CONTINUATION OF THE WORK.

The method of generalized angular velocities, applied to the oscillations

of networks with concentrated constants, has proved to be valuable for

engineering purposes. It is believed that the same method may be profit-

ably applied to networks containing branches with distributed constants.

A starting point for such work would be found in Heaviside's application

of the resistance operator to the smooth line.

SUMMARY.

In addition to the theorem which determines the free angular velocities

of oscillation of a network, there is a theorem which will determine the

amplitudes. This theorem involves a "threshold impedance" which may
be formed for any circuit with concentrated constants, and which enables

the amplitudes of oscillation to be found from the initial potential of the

unbalanced energy.
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An application of this method to the coupled circuit gives an easily ap-

plied and convenient complete solution for the primary condenser dis-

charge.

Applied to the artificial line, it enables the lumped line of a given number
of sections to be compared with the represented smooth line for certain

transient effects.

The writer wishes to express his thanks to Prof. D. C. Jackson, Dr. A. E.

Kennelly, and other members of the Department of Electrical Engineering
who have assisted him in the preparation of the thesis.

R-6-i 6-400.
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